(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
-(0, y) → 0
-(x, 0) → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
-(x, s(y)) →+ if(greater(x, s(y)), s(-(x, y)), 0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
-(0', y) → 0'
-(x, 0') → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0')
p(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
-(0', y) → 0'
-(x, 0') → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0')
p(0') → 0'
p(s(x)) → x
Types:
- :: 0':s:if → 0':s:if → 0':s:if
0' :: 0':s:if
s :: 0':s:if → 0':s:if
if :: greater → 0':s:if → 0':s:if → 0':s:if
greater :: 0':s:if → 0':s:if → greater
p :: 0':s:if → 0':s:if
hole_0':s:if1_0 :: 0':s:if
hole_greater2_0 :: greater
gen_0':s:if3_0 :: Nat → 0':s:if
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
-
(8) Obligation:
TRS:
Rules:
-(
0',
y) →
0'-(
x,
0') →
x-(
x,
s(
y)) →
if(
greater(
x,
s(
y)),
s(
-(
x,
p(
s(
y)))),
0')
p(
0') →
0'p(
s(
x)) →
xTypes:
- :: 0':s:if → 0':s:if → 0':s:if
0' :: 0':s:if
s :: 0':s:if → 0':s:if
if :: greater → 0':s:if → 0':s:if → 0':s:if
greater :: 0':s:if → 0':s:if → greater
p :: 0':s:if → 0':s:if
hole_0':s:if1_0 :: 0':s:if
hole_greater2_0 :: greater
gen_0':s:if3_0 :: Nat → 0':s:if
Generator Equations:
gen_0':s:if3_0(0) ⇔ 0'
gen_0':s:if3_0(+(x, 1)) ⇔ s(gen_0':s:if3_0(x))
The following defined symbols remain to be analysed:
-
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol -.
(10) Obligation:
TRS:
Rules:
-(
0',
y) →
0'-(
x,
0') →
x-(
x,
s(
y)) →
if(
greater(
x,
s(
y)),
s(
-(
x,
p(
s(
y)))),
0')
p(
0') →
0'p(
s(
x)) →
xTypes:
- :: 0':s:if → 0':s:if → 0':s:if
0' :: 0':s:if
s :: 0':s:if → 0':s:if
if :: greater → 0':s:if → 0':s:if → 0':s:if
greater :: 0':s:if → 0':s:if → greater
p :: 0':s:if → 0':s:if
hole_0':s:if1_0 :: 0':s:if
hole_greater2_0 :: greater
gen_0':s:if3_0 :: Nat → 0':s:if
Generator Equations:
gen_0':s:if3_0(0) ⇔ 0'
gen_0':s:if3_0(+(x, 1)) ⇔ s(gen_0':s:if3_0(x))
No more defined symbols left to analyse.